首页> 外文OA文献 >Apollonian Circle Packings: Geometry and Group Theory II. Super-Apollonian Group and Integral Packings
【2h】

Apollonian Circle Packings: Geometry and Group Theory II. Super-Apollonian Group and Integral Packings

机译:apollonian Circle packings:几何和群论II。超阿波罗集团和整体填料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Apollonian circle packings arise by repeatedly filling the intersticesbetween four mutually tangent circles with further tangent circles.Such packings can be described in terms of the Descartes configurationsthey contain, where a Descartes configuration is a set of four mutually tangentcircles in the Riemann sphere, having disjoint interiors.Part I showed there exists a discrete group, the Apollonian group,acting on a parameter space of (ordered, oriented) Descartes configurations, such that the Descartes configurations in a packing formed anorbit under the action of this group. It is observed thereexist infinitely many types of integral Apollonian packings in which all circles had integer curvatures, with the integral structure being related to the integral nature of the Apollonian group. Here we consider the action of a larger discrete group, the super-Apollonian group, also having an integral structure, whose orbits describe the Descartes quadruples of a geometric object we call a super-packing. The circles in a super-packing never cross each other but are nested to an arbitrary depth. Certain Apollonian packings and super-packings are strongly integral in the sense that the curvatures of all circles are integral and the curvature x centers of all circles are integral. We show that (up to scale) there are exactly eight different (geometric) strongly integral super-packings, and that each contains a copy of every integral Apollonian circle packing (also up to scale). We show that the super-Apollonian group has finite volume in the group of all automorphisms of the parameter space of Descartes configurations, which is isomorphicto the Lorentz group O(3, 1).
机译:通过重复填充四个相互切圆之间的间隙和其他切线来产生阿波罗圆填充,这种填充可以用它们所包含的笛卡尔构形来描述,笛卡尔构形是黎曼球体中四个相互切圆的集合,内部不相交第一部分表明存在一个离散的群,即阿波罗群,作用于笛卡尔构型(有序,定向)的参数空间,使得盘根中的笛卡尔构型在该组的作用下形成了眶骨。可以观察到存在无限多种类型的整体Apollonian填料,其中所有圆都具有整数曲率,其整体结构与Apollonian群的整体性质有关。在这里,我们考虑一个更大的离散群的作用,即超级阿波罗群,它也具有一个整体结构,其轨道描述了我们称为超级堆积的几何物体的笛卡尔四倍体。超级包装中的圆永远不会相互交叉,而是嵌套到任意深度。在所有圆的曲率是积分的并且所有圆的曲率x中心是积分的意义上,某些Apollonian堆积和超级堆积是强整数。我们显示(按比例)完全有八个不同的(几何)强整体超级填充,并且每个填充都包含每个整体Apollonian圆填充的副本(也按比例)。我们表明,笛卡尔构型参数空间的所有自同构组中的超Apollonian组具有有限的体积,这与Lorentz组O(3,1)同构。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号